ADVANCES IN MODELING AND SIMULATION OF FGM AND MULTIFUNCTIONAL STRUCTURES

JUSTIN. MURIN*, STEPHAN KUGLER†
AND VLADIMIR KUTIS*

* Department of Applied Mechanics and Mechatronic of IAMT, Slovak University of Technology in Bratislava,
Ilkovičova 3, 812 19 Bratislava, Slovakia
justin.murin@stuba.sk, vladimir.kutis@stuba.sk; www.fei.stuba.sk

† Department of Applied and Numerical Mechanics, University of Applied Sciences Wiener Neustadt,
Johannes Gutenberg-Straße 3,
A-2700 Wiener Neustadt, Austria
kugler@fhwn.ac.at; www.fhwn.ac.at

Key words: FGM and Multifunctional Structures, Modeling and Simulation and Measurement, Beams and Shells and Solid Structures.

ABSTRACT

Structures with spatially inhomogeneous material properties are of great practical importance in modern product and system design. Functionally Graded Materials (FGMs) and Multifunctional Materials are formed by a continuous gradation of two or more constituents over the physical volume. The minisymposium will offer a framework for discussing new ideas in this emerging field with emphasis on, but not limited to the following:

- FGM beam, shell and solid finite elements accompanied with suitable homogenization procedures with variation of material properties in one, two and three directions
- Novel concepts regarding non-uniform torsion of FGM beam and beam structures
- Linear and nonlinear problems of elastostatics and elastodynamics and elastoplasticity
- The multiphysical regime (thermo-elasticity and the piezo-electric effect, electro-thermal-structural problems, the Thomson and Seebeck effect, electromagnetic-structural analysis, etc.)
- Measurement technology and verification strategies for numerical procedures

REFERENCES