COMPUTATIONAL MODELING OF DURABILITY AND FAILURE OF CEMENTITIOUS MATERIALS AND COMPOSITES ACROSS SCALES

TRACK NUMBER 300

GÜNTHER MESCHKE*, JITHENDER J. TIMOTHY*
AND CHRISTIAN HELLMICH†

* Ruhr University Bochum
Universitaetsstrasse 150, 44801, Bochum Germany
www.sd.rub.de
guenther.meschke@rub.de, timothy.jithenderjaswant@rub.de

† Vienna University of Technology (TU Wien)
Karlsplatz 13/202
A-1040 Wien (Vienna), Austria
christian.hellmich@tuwien.ac.at

Key words: multiscale, fracture, durability, cementitious materials, composites

ABSTRACT

This mini-symposium will focus on recent advances, challenges, and on-going research in computational models for cementitious materials and composites focusing on characterizing fracture and/or transport processes and their mutual interactions within the context of durability and material design across multiples scales. Among others, the following topics will be covered by the minisymposium:

- Multiscale and multilevel models for the characterization of cementitious materials and composites
- Multiscale models for fatigue failure of cementitious materials
- Multiscale micromechanics and computational meso-scale models (e.g. Pore-network models, Lattice, CT based FE models) for characterizing damage and/or transport in cementitious materials
- Homogenization and upscaling methods (continuum micromechanics, computational homogenization etc.)
- Novel discretization methods (cohesive zone models, phase-field models, gradient (non-local) damage models, XFEM, peridynamics etc.) applied to fracture processes in concrete
- Modeling of transport and physico-chemo-mechanical processes (creep, shrinkage, chemical dissolution, chemically expansive processes)