COMPUTATIONAL CHALLENGES OF EXTENDED CONTINUA

TRACK NUMBER 300

PAUL STEINMANN*,†,‡, ALI JAVILI‡
AND ANDREW MCBRIDE‡‡

* Chair of Applied Mechanics, University of Erlangen-Nuremberg, Germany
 paul.steinmann@fau.de, www.ltm.tf.fau.eu
† Department of Mechanical Engineering, Bilkent University, Turkey
 ajavili@bilkent.edu.tr, https://w3.bilkent.edu.tr/bilkent/
‡‡Glasgow Computational Engineering Centre, School of Engineering, University of Glasgow, UK
 {andrew.mcbride, paul.steinmann}@glasgow.ac.uk, www.gla.ac.uk/research/az/gece

Key words: Extended Continua, Materials with Sub-Scale Structure, Bespoke Computational Methods.

ABSTRACT

Many important engineering and natural materials possess an underlying sub-scale structure that requires extended continuum descriptions to predict their response. This presents numerous computational challenges including, among others, the correct functional setting, implementation and efficiency issues, model and parameter identification, and verification and validation. Potential approaches include properly balanced ansatz spaces in Galerkin methods, colocation methods, automatic and symbolic differentiation, error estimation, adaptivity and parallelization, machine learning and inverse methods, and experimental data.

Given these challenges, the objective of the minisymposia is to share expert knowledge on recent developments in computational methods tailored to extended continua and thereby significantly advance the field.