STS 14
Sonic Boom Prediction: Near-field Simulation, Far-field Pressure Signature Evaluation, Structural Transmission and Low Boom Design

Chairs: Gérald Carrier* and Pierre-Elie Normand **

* ONERA - The French Aerospace Lab, Meudon Center, France, gerald.carrier@onera.fr
** Dassault Aviation, Saint-Cloud, France, pierre-elie.normand@dassault-aviation.com

Session Abstract

Keywords: Supersonic, near-field pressure field, far-field pressure signature, sound metrics, structural transmission modelling, low boom design, prediction capabilities

Since the retirement of Concorde, many ambitious industrial projects have emerged to be its worthy successor. However current regulations prohibit anyone from operating a civil aircraft at supersonic cruise over land. The reason being the sonic boom felt and heard on ground over the flight path of the supersonic aircraft.

Many researches have showed the way to a design that can diminish the perceived sound level on the ground. The Quiet Super Sonic Technology Demonstrator [1] will provide input concerning the feasibility of low sonic boom design in terms of measures and community response. JAXA intends to demonstrate and validate its "low sonic boom design concept" through flight tests [2]. As for the European side, the project RUMBLE [3] provides sonic boom prediction methodology, sleep studies and structural transmission analysis.

In this context this technical session will focus on the recent international work concerning:

- Near field CFD computation, code-to-code comparison and best practices
- Far field propagation: code-to-code comparison, atmospheric sensitivity, topology effects, earth’s boundary layer’s turbulence effects and best practices
- Structural transmission analysis
- Low boom design

References

[1] https://www.nasa.gov/X59
The following papers and authors are foreseen in STS 14:

Sonic Boom Prediction Capabilities: Overview of the Project RUMBLE Work Package
Gérard Carrier, ONERA, Meudon Centre, France, gerald.carrier@onera.fr

Numerical Modelling Study of Sonic-Boom-Induced Structure Vibration
Joonsang Park, Joonsang.Park@ngi.no, Finn Løvholt, Finn.Lovholt@ngi.no, Karin Norén-Cosgriff, karin.noren-cosgriff@ngi.no, Jörgen Johansson, Jorgen.Johansson@ngi.no, NGI - Norwegian Geotechnical Institute, Oslo, Norway

Resolution of the Euler Equations in Curvilinear Coordinates for Sonic Boom Propagation
Ariane Emmanuelli, ariane.emmanuelli@ec-lyon.fr, Thomas Lechat, thomas.lechat@ec-lyon.fr, Didier Dragna, didier.dragna@ec-lyon.fr, Sébastien Ollivier, sebastien.ollivier@ec-lyon.fr, Philippe Blanc-Benon, philippe.blanc-benon@ec-lyon.fr, École Centrale de Lyon, Écully, France

Quantification of the Turbulence Effects on Classical and Low Booms
Roman Leconte, roman.leconte@dalembert.upmc.fr, Régis Marchiano, regis.marchiano@sorbonne-universite.fr, Jean-Camille Chassaing, jean-camille.chassaing@sorbonne-universite.fr, François Coulouvrat, francois.coulouvrat@upmc.fr, Sorbonne Université, Paris, France

Sensitivity Propagation Analysis of a Supersonic Aircraft Low Boom Signal through Different Atmospheres
Pierre-Elie Normand, Pierre-elie.normand@dassault-aviation.com, Gérald Carrier, gerald.carrier@onera.fr, Patrice Malbequi, patrice.malbequi@onera.fr, ONERA, France

Low Sonic Boom Design in the RUMBLE Project: Progress and Challenges
Olivier Atinault, Olivier.Atinault@onera.fr, Stephen Rolston, Airbus, Bristol, U.K., stephen.roלston@airbus.com, Stephen Powell, Airbus, Bristol, U.K., stephen.powell@airbus.com, Jochen Kirz, DLR, Braunschweig, Germany, Jochen.Kirz@dlr.de, Pierre-Elie Normand, Dassault-Aviation, St. Cloud, pierre-elie.normand@dassault-aviation.com